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Then, using (9) with allowance for (12) and (10). we determine pai* at the same points. 
This is followed by the determination of functions &j and $ij for the next layer, using 
the new value of pai*. This procedure is repeated until the criterion of completion of 

the transient process - stabilization of the oscillation mode of the elastic system - is 
reached (Fig. 5). Completion of this process can be also judged by the behavior of tran- 

sient functions pai* (z) (see Fig. 6). 
The obtained numerical data are shown in Figs. 3 and 4 in the form of curves 5 (5, Z) 

andp,* (E, T)for p* = 3. Examination of Fig. 3 shows that the continuous change of the 
median surface shape with a shift of the maximum amplitude of deflection toward the 

plate trailing edge is a distinctive feature of deformation of the panel under transient 

conditions. This also follows from the diagram of distribution of parameter Pa* (E, T) 
shown in Fig. 4. A set of curves related to the points lying at distances equal 1/s and 
4/5 of the plate length from the plate leading edge is shown in Fig. 5. It is seen that 

perturbations in the stream result in rapid increase of deflection, beginning at points in 
the neighborhood of the trailing edge and, then, with a certain lag, at points close to the 
leading edge. Later, when oscillations become stabilized, this process is somewhat atten- 

uated. Transient functions pili* (t) and pai* (t) for points of the panel to which in Fig. 5 
relate curves $ (T) are shown in Fig. 6, where the different rates of pressure increase with 

time are a significant feaiure of curves Pai* (t) . 
We note in conclusion that the proposed method makes it possible not only to estab- 

lish the deformation pattern of the panel median plane and pressure distribution with 

respect to time but, also. to determine unsafe stresses in the structure in transient mode 

and stable oscillations. 
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On the basis of a spectral relationship for the Jacobi polynomials which is more 
general than that used in [ 13, a method is proposed for solving the plane contact 
problem for a linearly-deformable foundation of general type whose particular 
case is a half-space with an elastic modulus of the form 

E =z EvZY (O<v< 1) 

The exact solution of the plane problem of the impression of a die with 
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adhesion was apparently given first for this case and it was shown that the contact 
stresses at the edges of the die tend to infinity as in the case of an ordinary half- 

space, changing sign an infinite number of times. The way is indicated for solv- 

ing approximately the bending problem of a finite beam adhering to a linearly- 
deformable foundation. The inaccuracy in the paper c2] devoted to this same 

problem in application to the mentioned particular case of a foundation is poin- 

ted out. 

1. The necessary information about a linearly-deformable foundation is related to 
giving the displacement of the surface points of the foundation due to the effect of a 
concentrated force. Let f&u,, (x), - esu, (x) , respectively, denote the vertical and 
horizontal displacements of the mentioned points due to a unit vertical force applied at 

the point taken as the origin [3, 11. Let 8,v, (x), @,v, (x) denote analogous displace- 
ments due to a horizontal force. If the foundation under consideration is elastic, then 

8,~~ (x) = 0,~s (x) because of the reciprocity law. Let us consider [ 1, 31 the influence 
functions introduced to be representable as follows : 

(1.1). 

but let us assume a more general asymptotic behavior at infinity for the densities rp, (t), 
which will agree with that taken in [4] 

(Pm (9 = tY [I + 0 V)l (L+=J, o<(Y< I, &>O, 1r1 -o,i, 2, 3) (1.“) 

Let a die,on which an arbitrary system of forces with principal moment Al (pole of 
reduction at the midpoint of the section) and with principal vector components P (ver- 

tical) and Q (horizontal) acts, adhere to the section ( - a, a) of the surface of the 
foundation. It is required to determine the normal p (x) and tangential Q (x) contact 
stresses. If g, (x) and gr (z;) , respectively, denote the vertical and horizontal displace- 
ments of the contact points, then the problem can be expressed in the form of the follow- 

ing system of integral equations [l, 3, 43: 

I30 j vo (x - Y)P (Y) $I -I- 0, i: Ul(Z - Y) 4(Y)+/ = g1(4 (1.3) 
--a -_(L 

e,! u2 (X - Y) Q (Y) do - e3 1 us (J. - Y) P (Y) a = g, (~9 
--a -_(I 

(I x I < a) 

If the die has a flat base, then 

g, (x) = 6 + ox:, g, (x) = a (1.4) 

where 6 is the vertical settlement of the die, 8 is the angle of rotation, and E is the 
horizontal displacement of the die, whose magnitudes should be determined from the 

equilibrium conditions of the die. 
In order to apply the method of orthogonal polynomials [S] to the solution of the sys- 

tem (X.3), let us isolate the irregular parts of the influence functions by using (1.1) and 
formula 3.761 from [6], i. e. let us represent them as 
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co 

11,3(x) = * 
I? (v) sin '/gm 

\ iv - T1,3(t) sin tzdt 

0" 

Because of (1.2) the functions I, (x) (m = 0, 1, 2, 3) will be continuous at least. 
Keeping (1.5) in mind, we can write the characteristic part of the system (1.3) as 

a 

8,” ” 
a 

P (Yf 44 sgn (5 - Y) 
_-a vlx---YY” -el*_la IZ-Yk 9 (Y) dy = fl (4 (f-6) 

n a 

%* s 
Q (Y) a 

VI”-?/I” 
- 8,” P (Y) 44 = fz k) 

--a 

be (),s* = r (Y + 1) cos1/~Yd30,2, TC~~,~* = I? (v)sinll,vne,,,) 

Let us try to obtain the exact solution of this system. Let us make the substitution 

X = aE, _rj = UQ, let us divide the first equation by Q,* and the second by 8,” and 
let us introduce the notation 

X*2 = 0,*0,* / er*es*, X= = e,*e3* 1 e1*e2* (1.7) 
r (q) = x*W-~~ (a~), s (q) = ?c-‘W-“q (aq) 

Multiplying the first equation of the system obtained by ix-‘; and the second by - x”s 

and adding the results, we obtain 

1 

’ 
\ 

sgn (E.-Q 4 i ctg l/=&c 

I E - rl 1.’ 
xtrl)drl =fC3 

-5 

(1.8) 

The integral equation (1.8) can be solved exactly. For example, its solution in quad- 
ratures can be found in [4]. Such a form of the solution can turn out to be useful to 

obtain an approximate solution of the initial system (1.3) by the Carleman method of 
regularization. This method has been used in @, 73 in application to a foundation in 
the form of an elastic layer. For the purposes of this paper. a form of the solution as a 
series of Jacobi polynomials P,“’ s (z) is more preferable 
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3, zz 22% [sin ‘15 (v + h) rZ Sin I/Z (v - h) ~l;]*‘~ 
sin w sin J/&x ---7 

f, I ( !K) 2;;;;) @ 
I... 

A, = 2”p.y B co -+ ii, -i_ m) 1” [m!Z (Y -t_ &o I‘ (vff-1 
Formula (1,ZO) results from the spectraf relationship contained in [4, 8f 

1. 

c 

[sgn (4 - r) I_ i ctg ‘i&cl Pm@ jrl) dr) i iy), 0, 
= - P;(E) rl%! (1.11) 

-Jl I F, - 11 I” 4$ bl) 

2. The spectral relationship (1.11) permits application of the method of orthogonal 
~~ynornia~~ to obtain an approximate solution of the system (1.3). Let us first represent 

it as one inregral equation in X f E) defined by (1.7) and (I. 9). To do this, the same 

manipulations should be performed as had been done above with the system (1.6) tak- 

ing the representation (1.5) into account here. Consequently, we will have in place of 

(1.3) 

g (8 = id2 (Q”J’& (UE) - 2’2 (O,“)-‘g, (at) cw 
2a--“P (-4 = 1, (a.2) -J: ix*12 (ax) + II (ax) + ix*l, (m) 

Now, if we seek the solution of the obtained integral equation in the form of a series 

(2.2) 

then by using the procedures of the method of orthogonal polynomials [5], an infinite 

system of algebraic equations in z,is easily obtained. For example, if the regular parts 

of the kernel functions are approximated by polynomials of the form 

I, (s) = jj aj WS23 (m -= 0, 2), 1, (S) = i nj 
bosw 

(m = I, 3) (2.3) 
j+l j=O 

then the mentioned infinite system of algebraic equations degenerates into a finite 

Here 

(I = 0, 1.. N, N = 2n + 1) 

.?I[ = g,(i3Jp G>W 

(2.5) 
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bj” (p) = 0, j < m; bj” (0) = 
2v+jr (I -- o --P+i)r(1--+fP+m)(--i), 

n! r(V+j+nfi) 

i>m 

The formula (compare with [ 11) 

Bi; zz (- l)mtkt’B;; 

is useful for separating the imaginary from the real parts in the system (2.4). It should 

be kept in mind that the right side of the integral equation is given, according to (1.4), 
just to the accuracy of an additive linear function of the form 

g (E) = - e* + i6* + if3*~ (2.6) 

(V/x e = f.&*e,*, 6 = I/x l&*6*, ue = cl,* I/-&*) 

whose parameters govern die rotation (0) and displacement of its center of gravity 
(E, 6). The die equilibrium conditions should be used to seek these parameters. Mom- 

ents of the form 

J, = f Ekx(WL x-=0,1 (2.7) 
-1 

should be found to obtain these latter conditions. Taking (2.2) into account and using 
the orthogonality of the Jacobi polynomials, we find 

2YR,zo ZV+iR 
J, = 

r (Y + 1) ’ 
J1 = 

r (y + i c 
(1 + ‘)’ 4 4P2 z1 + ipz, 

4 (v + 2) 1 (2.8) 
(R, = I? (1 - 0 + ip) r (1 - 0 - ip)) 

If it is taken into account that (1 

[P, 91 = j [P (d, ~7 (41 dx, M = j zp (x) ds 
-_(L --a 

and also (1.7), (1.9), (2.7) and (2.8), then the required conditions yield 

xl,‘sp + ix-‘,‘zQ = 
(2~)’ R, 

r (Y + I) ‘O 

xl’“r (Y + 2) IV2 = Re (1 + Y)” + 4pa 

(2a)"+'H, 4 (y + 2) 
Q+ iw 

3 

(2.9) 

If the die has a flat base, i. e. (1.4) holds, then the right side in the integral equation 
(2.1) equals the function (2.6) exactly. In this case 

2YIj" 

( 
-E* + it?* + 

2p0* 
j 

2"-Ii [(l + v)2 + 4pq i?,e* 

go = r(Y+l) 13-v' g1 = 
r (Y 4 3) 

(2.10) 

g,=O (72 =2,3,4...) 

and therefore, in conformity with (2.4), the series (2.2) determining the solution of the 
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integral equation (2.1) under the condition (2.3) degenerates into a finite sum with 
N + 1 terms. The representation 

2, = (-e* + is*)z,* + 0*z,s (72 =o,i.. N) (2.11) 

should hence be used to determine the parameters E, 6, (l from the equilibrium con- 
ditions (2.9), and also for convenience in solving the system (2.4). Here z,* is the 
solution of the system (2.4) for g, = 2”RJ-1 (Y + I), g, = 0 (n = 1, 2, 3 . ..). 
zne is the solution of the system (2.4) for 

go = 
2Y+lPH, 

I‘ (Y + 2) ' &?l = 

i2”-1 [(I + Y)2 + 4pZ] R, 

r (y + 3) ’ g, = 0 (n>2) (2.12) 

Substituting the values z,, and zi into the conditions will result, according to (2.11). in 

equations for E*, 6*, El* or according to (2.6) for E, 6, 0. 

The constructions described above are carried out under the assumption that v > A. 
However, they remain valid even for the case h > v. Only here, the following spectral 
relationship issuing from the results in [4, S] 

s ’ [W (E; - q) + i ctg ‘ishn] Pmp (q) dq = (“), cLv~,/ (- 4) 

I 4 - 11 I” q? (rl) (- l)m+i m! 
-1 

(2.13) 

p$ @) = pz-l-iii. ‘I’zvtiP (4 4% (4 = (1 - 4 - 
1 lyvtiP (1 + 2)-1’p~-ip 

p=&l sin i/sn (a + v) 2X [sin ‘/ln (h + v) sin l/g (h - Y]‘:~ 
sin l/gc (h - v) 7 p” = sin nv sin 1/&f 

should be used in place of (1.11). 

3. Let us turn to the particular case of the linearly-deformable foundation under 
consideration which is an elastic half-space with elastic modulus varying as the law 
E = E,?, Following [9], we discern that in this case 

u0 (x) = uL (x) = Y‘l 1 5 I-“, v1 (2) = uy (32) = 1 z Imy sgnz 

8 = (1 - p?) TC, sin ‘/zTx (1 -- P’I) (1 + v) C, sin lizm 
0 

(1 + ~1 E, ' 
0, = 

TE" 
(3.1) 

OS = 01 = - 
(1 - PZ) c, cos ‘1275% 

VE” 

, c 
, 

= Y+‘T l’iz (v + r -t- 311 I 1% (v -- r + 3)l 
nl‘ (v + 2) 

y = J/ (1 + y) [I - py (1 - p)q (p is the Poisson-s ratio) 

If we assume 
y-l=h (x r= (1 + h) (1 +- Y)-1) (3.2) 

then the contact problem under consideration for the linearly-deformable foundation 
(3.1) can be reduced in conformity with Sect. 1 to the integral equation (1. 8) with 
f (k) = g (E) and its exact solution can be obtained either in the form of quadratures 
or series (1.10). It is hence easy to show that v - h > 0 always for the foundation 
under consideration. If a die with flat base is kept in mind, i.e. (1.4) (2.6) and (2.10) 
are assumed to be valid, then the equilibrium conditions (2.9) for such a die will become 

(3.3) 
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Hence, taking account of (2.6) we obtain 

0 v3,r (v +- 1) T 
-xz 

Hl 

$ __ (v + 2) (Y + 1) [n-r (Y + I) M + ZpQx-I] 
HV (2a)' \ (1 + Y)” + 4,-z (3.4) 

ET 
1’ (v + 1) G~,,Bl 

1 $- 
4v (V + 2) p’ 

+- 
2v (v ;- 1) (Y + 2) p:ll 

(2u)” l<, (1 f Y)‘ f 4,- ,.. a ]\I + v)” + 4,-] 

Taking these formulas as well as (1.7),(1.9),(1.10),(2.6),(2.10) and (3.2) into ac- 
count, after separating real and imaginary parts.we obtain the desired contact stresses 
under a flat die subjected to the forces P and (J and the moment M 

P(X) = 
r (v + 1) (2a)_” 

R, (aa - ~2)~ 
P+ xT 

a(v+i) 1 i cos p 1,~) - 
--- 

4 (XI = + 

If only a compressive force (T = Q = 0) acts on the die, then it is seen that stress 
pulsations at the outer contact points, noted in [lo] for an ordinary half-space, will hold 
in the case of an inhomogeneous half-space with E = EVzY . 

Letting Y --t 0 in the formulas obtained, we obtain all the known formulas for an 
ordinary half-space. Let us note that it is convenient to use the following representation 
resulting from formulas 8.381 (4) and 8.384 (6) from [6] 

xi2 
J-c 

y II- 

R, = r (v) - \ ch2,otcoWtdt (o<y<i) 
0 

(3.6) 

to evaluate the R, given by the formula from (2.8). 

4. let a beam of finite length 2a and height h on which act the vertical Pt (5) 
and horizontal qL (x) loads, adhere to the linearly-deformable foundation considered 

in Sect. 1. It is easy to show that the problem of designing such a beam can be reduced 
to the solution of the following integro-differential system : 

62 :E uo (x - Y> P CY> &v + @I j: Ul(X - Y>Q(Y)@ = w(x) (4.“,) 
--a -a 

rr 

0, 5 uz (x - Y) 4 (Y) dy - 83 5 ~3 (x - Y) P (Y) dy = u (x) + + g 
--a L 

D 
d*ro 
- = Pl CT) - P (J) - -g [fg + y, d.c’ c g = q (5) - qL (.r) 
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Here w is the beam deflection, u is the horizontal displacement, D is the beam ben- 
ding stiffness, and C is the beam tensile stiffness. Support conditions at the beam end- 
points must still be added to the integro-differential system written down. If the beam 
ends are free, then these conditions can be replaced by the equilibrium conditions for 

the beam as a rigid body. Inverting the differential operators in (4.1) by using a Green 
function [ll], we can eliminate u) (Z) and u (x) from the first two equations. 

As in the case of the problem of a die, we consequently obtain a system of integral 

equations in the contact stresses (we eliminate the derivative of q (x) contained in 
the third equation by integration by parts). Exactly as in the case of the die, the right 

sides of the integral equations will contain arbitrary constants which should either be 
found from the support conditions for the beam ends, or from the equilibrium conditions. 

The mentioned system can be reduced to an integral equation of type (2.1) by the pro- 
cedures described in Sect. 1, and the method elucidated in Sect. 2 can be used for its 

approximate solution. 

It should be stated that the paper c2] is devoted to the problem considered here in 
application to the particular case of a linearly-deformable die. In that paper it is pro- 
posed to use a series of Gegenbauer polynomials 

in place of the series (2.2) for the contact stresses for the approximate solution of the 
corresponding system (4.1). 

The disadvantage of such a representation in contrast to (2.2) is that the true nature 

of the singularities in the stresses sought at the beam ends is not taken into account here. 
This results in the fact that in the neighborhood of the beam ends the approximate solu- 
tion will differ arbitrarily from the exact solution. However, the main deffect in B] is 

that, firstly, the author took Cl0 = 8, in addition to the normal equality tl, = B3 in the 
corresponding system (4.1) (evidently by analogy with an ordinary half-space) ; as is 
seen from (3. l), this latter equality does not hold. Secondly, in selecting the desired 

contact stresses in the form (4.2). the author of [2] relied on the established fact [8] 
that Gegenbauer polynomials are eigenfunctions of the series 1 z - y 1” (0 < Y < 1) 
with which the kernels v,, (5 - y) and v2 (I - y) of the system (4.1) agree in the case 
of the foundation (3.1). But, in conformity with (3. l), still another kernel 

sgn(~-y)I~-~I-~ 

is contained in the system mentioned. 

(4.3) 

Referring to the spectral relationship (1.11) obtained in [4], the author of @] asserts 
that Gegenbauer polynomials are also eigenfunctions even for the series (4.3). However, 
this assertion is inaccurate. In fact, the relationship mentioned in [8] 

1 . 
I 

sgn (z - y) ‘2 2. ” 8 ‘-I (I/) dy n (Y),P> *-I* ” ,‘2 (2) 

= i Z - y 1” (1 - ?/)“” (1 + y)l-’ ” sin ‘/zvnnf ! 
-1 

results from the spectral relationship (1.11). 
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We give the theoretical description of regular elastic structures in an unbounded 
elastic medium with congruent (doubly-periodic) groups of arbitrary foreign in- 
clusions. Within the limits of a group the elastic characteristics of the inclusions 
are distinct and their configurations are sufficiently arbitrary. We construct a 
model anisotropic medium which has the rigidity of the original structure. 
References on problems of the theory of elastic regular structures can be found 

in[l-31. 


